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General background

The gastrointestinal peptide hormone, secretin, was 
originally identified by Bayliss and Starling in 1902 (1). 
Secretin is a member of the secretin-glucagon family and 
is secreted by S cells of the duodenum in the crypts of 
Lieberkühn (2). Secretin affects the function of a number 
of organ systems and cell types (1-7). Secretin exerts its 
biological effects through G-protein coupled secretin 
receptors (SR), which are expressed in the basolateral 
domain of several cells (3,5,8-11). In addition to regulating 
the pH of the duodenal content by the control of gastric 
acid secretion (12), secretin regulates the secretion of 
bicarbonate ions into the duodenum from the epithelia 
lining the pancreatic and biliary ducts (3,6,7,13). In 
addition to regulating water homeostasis (4), secretin has 
been considered as a neuropeptide hormone since it is also 
expressed in the central nervous system (CNS) (14-16). 
Recent evidence has indicated that secretin has pleiotropic 

effects in several organ systems (including the biliary 
epithelium) (17) and has been termed a neuroendocrine 
hormone (18). 

The neuroendocrine hormone secretin

Structure of secretin

The peptide sequence of secretin was first determined 
with porcine secretin in 1970 (19). The human secretin 
gene is 514 bp, which is longer than that of mouse or rat, 
507 bp and 405 bp, respectively (20,21), NCBI Reference 
Sequence: NM_022670.2. The human secretin gene 
shows 42.7% homology to the mouse secretin gene, and 
46.8% homology to the rat secretin gene. Homology was 
analyzed using SCAN2 software from Softberry, http://
linux1.softberry.com/berry.phtml?topic=scan2&group=
programs&subgroup=scanh subsequently, % homology 
was calculated independently. Secretin is a 27-amino acid 
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peptide and is the active form of pro-secretin, which is 
known as a preprohormone and is synthesized as a larger 
precursor like other regulatory peptides (22,23). Secretin is 
initially synthesized as a 120 amino acid precursor protein. 
This precursor contains an N-terminal signal peptide, 
spacer, secretin itself (residues 28-54), and a 72-amino acid 
C-terminal peptide (24). This peptide is proteolytically 
processed to yield a single linear 27-amino acid peptide 
hormone with a molecular weight of 3,055 kD by removal 
of the signal peptide, plus amino and carboxy-terminal 
extensions (25). The sequence of the mature peptide has 
homology to that of other peptides isolated from the 
gastrointestinal tract including glucagon, vasoactive intestinal 
peptide (VIP) and gastric inhibitory peptide (PHI-27), which 
are the members of the secretin family (25,26). The gene 
and amino acid sequence of the human secretin is depicted 
in Figure 1.

Anatomical sites of secretin synthesis and secretion

The predominant anatomical site of secretin synthesis is 
in the cytoplasmic secretory granules of S-cells that are 
located in the mucosa of the small intestine in the crypts 
of Lieberkühn (2). Secretin is also secreted by specific 
endocrine cells in the mucosa of the proximal small 
intestine and expressed in smaller numbers in the jejunum 
of duodenum (2,29). In addition to being localized in the 
duodenum (2,24), secretin is also expressed in the CNS 
(30,31). Indeed, a study has demonstrated that secretin is 
expressed in both the pituitary and pineal glands and at 

lower levels in the hypothalamus, thalamus, and olfactory 
lobe (32-34). The mRNA encoding secretin is also expressed 
in the Purkinje cells of the rat cerebellar cortex (35). The 
fact that secretin precursor mRNA in the brain has the 
same coding sequence as that of the duodenum suggests the 
secretin precursor protein in the small intestine is perhaps 
the same as the one synthesized in the brain. Conversely, 
another study has shown low secretin immunoreactivity in 
the brain (24). Further studies are warranted to clarify this 
discrepancy. The secretin precursor gene is also expressed 
in the heart, lung, kidney, testis, and brain as well as the 
gastrointestinal tract including the biliary epithelium 
(36,37). The mRNA for secretin and its receptor have been 
also demonstrated in the intestine, heart, and pancreas 
(24,38,39). Preliminary data from our laboratory have 
also shown that: (I) cholangiocytes express the mRNA for 
secretin and synthesize secretin; and (II) knockout of the 
gene for secretin reduces biliary growth in cholestatic mice 
likely by an autocrine mechanism (37). 

Brief general background on secretin biological 
effects

Secretin exerts pharmacological effects in a number of 
organs including the heart, kidney, lung, and brain (40-43). 
Secretin has been show to stimulate bile and bicarbonate 
secretion in the duodenum (44), pancreatic (45) and biliary 
(3,7,46) ducts as well gastric pepsin secretion (47). Also, 
secretin inhibits gastric acid secretin and food-stimulated 
gastrin release (48) as well as upper small intestinal 

Figure 1 Ribbon structures for secretin precursor and secretin hormone. The peptide sequence for full-length secretin is 121 aa, and 
contains multiple stretches capable of hydrogen bonding (red boxes) to support α-helical arrangement. The secretin hormone is 27 aa, and 
contains one long sequence that supports α-helical formation. 3D structures were predicted with the help of I-tasser software (27,28).
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motility and lower esophageal sphincter pressure (49). 
Secretin induces the release of insulin from the pancreas 
following ingestion of glucose and may be important for the 
management of blood sugar levels (50).

The G-protein coupled secretin receptor

Expression of secretin in various tissues and cell types

Human secretin receptor was originally isolated from 
lung cells (51) and found on the basolateral domain of the 
epithelia within the tertiary bronchus (52). The expression 
of the secretin receptor has been demonstrated in a number 
of organs including the brain (cerebellum, hippocampus 
and central amygdala) of humans and rodents (33,53,54), 
pancreas (14), stomach (14,55), kidney (14,41) as well the 
biliary epithelium in the liver (3,8,56-58). Immunoreactivity 
for secretin receptors is present in the renal medulla, 
proximal tubules, and ascending thick segment of the loop 
of Henle in the kidney (53).

A number of studies have also shown that secretin 
receptors are only expressed in cholangiocytes in the liver 
(3,8,38,57,59,60). An in vivo autoradiography study in rat 
liver has shown specific binding of 125I-labeled secretin 
to bile duct areas of normal and BDL rats, binding that 
increased following BDL (59). In vitro studies have shown 
that secretin stimulates exocytosis in normal cholangiocytes 
by increasing intracel lular  adenosine 3' ,5'-cycl ic 
monophosphate (cAMP) levels by interaction with secretin 
receptors (61). Conclusive evidence came from our recent 
studies showing that: (I) large (but not small) cholangiocytes 
in rodent liver express secretin receptors (3,57); and (II) 
the expression of this receptor increases in models of intra- 
and extra-hepatic cholestasis such α-naphthylisothiocyanate 
feeding (62) and BDL (8,56) and decrease in models of 
biliary damage loss (e.g., after CCl4 administration) (63,64). 
Small cholangiocytes (which normally do not express 
secretin receptor) (63,64) acquire de novo this receptor only 
during damage of large cAMP-responsive cholangiocytes 
(63-65). The secretin receptor is also expressed and up-
regulated in kidney and cholangiocytes in rodent models 
of polycystic kidney and liver disease such as in Pkd2(-/
WS25) mice (66). A study (analyzing the expression of 
secretin receptor in human samples) has demonstrated 
the presence of these receptors in normal bile ducts and 
ductules but not in hepatocytes (67). The expression of this 
receptor was higher in ductules during liver cirrhosis and 
cholangiocarcinoma, whereas no immunohistochemical 

reaction was observed in hepatocellular carcinomas (67). 
Conclusive evidence for the presence of secretin receptor 
in cholangiocytes came from a recent study showing that 
knockout of secretin receptor reduces large cholangiocyte 
hyperplasia in cholestatic BDL mice (17). Thus, changes 
in the expression of this receptor may be a unique tool for 
managing the balance between biliary growth/damage in 
chronic cholestatic liver diseases (17,62-65). 

Signaling mechanisms

The effects of secretin on the gastrointestinal tract and 
other organ systems are mediated by interaction with 
basolateral SR (15). The secretin receptor has seven 
membrane-spanning domains and it is a typical G protein-
coupled receptor (GPCR) under the class B GPCR 
subfamily (5). The messenger system, cAMP, is classical 
signaling that is activated by secretin in a number of 
systems such as the pancreas, brain, kidney as well as the 
biliary epithelium. For example, in bile ducts the activation 
of cAMP signaling by secretin induces phosphorylation 
of protein kinase A (PKA) that causes activation of cystic 
fibrosis transmembrane conductance regulator (CFTR), 
which in turn induces activation of the Cl-/HCO3

- anion 
exchanger 2 (AE2) (3,7,57,68). Also, impaired pancreatic 
ductal bicarbonate secretion has been observed in cystic 
fibrosis (6,69). The cAMP signaling system plays a key 
role in the modulation of large biliary secretion and 
proliferation since it is activated by secretin (stimulating 
bicarbonate secretion) (3,57,68) and also stimulates 
large cholangiocyte proliferation (17,56). Down- or up-
regulation of cAMP signaling (for example by somatostatin, 
gastrin, endothelin-1, the α2-adrenergic receptor agonist, 
UK14, 304, or the α1-adrenergic agonist, phenylephrine) 
(70-74) has also been associated with decreases/increases 
of secretin-stimulated ductal secretion. While some of 
the inhibitory effects on secretin-induced choleresis are 
mediated by direct downregulation of cAMP signaling, 
others depend on the activation of Ca2+-dependent PKC 
isoforms that subsequently induce (by Ca2+→cAMP cross-
talk) changes in cAMP levels and secretin-stimulated ductal 
secretion (70-74). The cAMP second messenger system (that 
is not constitutively active in small cholangiocytes) (63,64) 
is de novo activated in these cells during the damage of large, 
cAMP-responsive bile ducts. 

In the pancreas, secretin receptors are key for the 
maintenance of healthy ductal epithelial cells, but they are 
functionally altered in ductal pancreatic adenocarcinomas. 
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Recently, silencing of secretin receptor function by 
dimerization with a misspliced variant secretin receptor 
has been shown in ductal pancreatic adenocarcinoma (75). 
Although wild-type secretin receptor mRNAs were detected 
in the primary tumors in these studies, the lack of biological 
response to secretin is likely due to the co-expression of a 
second and predominant transcript in these tumor lines (75). 
This represented a variant of the secretin receptor in which 
the third exon is spliced out to eliminate residues 44-79 
from the NH[2]-terminal tail (75). The study suggested that 
suppression of SR activity in pancreatic carcinoma might 
facilitate tumor growth and progression of this neoplasm. 
Wild-type and splice-variant secretin receptors have been 
shown in tumor and non-tumor lung pathology as well (76). 
Dominant negative action of an abnormal SR arising from 
mRNA missplicing has been detected in gastrinoma (77). 
Reduced secretin binding has also been shown in pancreatic 
ductal tumors and likely relate to (alternatively spliced) 
secretin receptor isoforms (78). Targeting secretin receptors 
may be important in the management of pancreatic tumors.

Regulation of gastric acid secretion by secretin

A number of studies and review articles exist regarding the role 
of secretin in the regulation of acid secretion from oxyntic cells 
(12,79-82). For example, secretin inhibits gastric acid secretion 
and motility via a vagal afferent pathway in rats (79). These 
results indicate that inhibition of pentagastrin-stimulated 
acid secretion by secretin is mediated by a capsaicin-sensitive 
vagal afferent pathway (79). Other studies in rats have 
demonstrated that the inhibitory action of secretin on 
pentagastrin-stimulated gastric acid secretion is regulated 
by both somatostatin and prostaglandins (80,81). This topic 
is beyond the purpose of this review and we refer to other 
studies for further detial (12,79-82). 

Regulation of pancreatic bicarbonate secretion

Secretin stimulates the secretion of a bicarbonate-rich 
pancreatic fluid (45). Secretin enters the blood stream or 
intestinal lumen and stimulates bicarbonate secretion (by 
interacting with pancreatic ductal cells), which neutralizes the 
pH of the gastric chyme upon entering the small intestine 
(83,84). cAMP signaling plays a key role for the secretion of 
bicarbonate ions from the pancreatic ducts. Secretin-induced 
bicarbonate secretion depends on the activation of the cAMP-
dependent anion channel, CFTR, which is localized in the 
apical membrane of various epithelia including pancreas and 

bile ducts (6). In fact, pancreatic ducts from CFTR-null mice 
secrete water and bicarbonate at lower levels compared to 
wild-type animals (85). 

Role of secretin in water homeostasis

Body water homeostasis is a critical phenomenon for the 
survival of cells since it maintains the balance between 
water intake and excretion in the body. Kidney are 
essential parts of the urinary system and serve homeostatic 
functions by regulating acid-base balance as well as blood-
pressure via maintaining salt and water balance (86). 
Several hormones have direct influence on the regulation 
of renal handling of water and electrolytes by anti-
diuretic or diuretic effects. As an anti-diuretic hormone, 
vasopressin regulates the osmolarity of extracellular fluids 
by modulating the amount of free water excreted by the 
kidney. Vasopressin has an effect on the collecting ducts, 
where it induces the insertion of aquaporin 2 (AQP2) 
water channels on the apical membranes of these cells 
(87,88). Regarding secretin, a study suggested that this 
gastrointestinal hormone has diuretic effects in a number 
of species including humans and dogs (89). Secretin has 
been shown to induce an increase in urinary volume and 
bicarbonate excretion in normal human subjects (89,90). A 
study by Waldum et al. has shown that secretin induced an 
increase in renal plasma flow that may be due to enhanced 
renal vasodilation or cardiac output, or a combination 
of both that impairs tubular sodium reabsorption (91). 
Another study has demonstrated the diuretic effect of 
secretin in dogs, which resulted in diuresis and significant 
increases in sodium and potassium output (92).

Role of secretin in the central nervous system

A number of studies suggest that secretin is expressed in the 
brain and regulates the function of the central nervous system 
(CNS) (24,35,36). For example, impaired hippocampal 
synaptic function has been demonstrated in secretin-deficient 
mice (16). Impaired synaptic plasticity and social behavior 
has been shown in secretin receptor-deficient mice (14). 
The studies demonstrate that the secretin/secretin receptor 
axis may be important in the regulation of the function 
of the CNS (14,16). Other studies have shown that the 
secretin gene is expressed in serotoninergic mesencephalic 
neurons during development (93). It was shown that secretin 
has trophic effects on these neurons, effects that are lost 
in neurodegenerative disorders (93). Additional evidence 
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suggests that secretin can act as a neuropeptide within the 
CNS (94). 

Role of secretin in the heart and cardiovascular 
system

Sympathetic and parasympathetic nerve fibers have been 
shown to regulate cardiovascular function through an 
autonomic system (95). Indeed, several neuropeptides are 
secreted in the heart (95-97) and may play an important 
role in the autonomic regulation of cardiac function as 
neurotransmitters or neuromodulators (95). In this review, 
we discuss the role of secretin in the regulation of heart 
function, which acts not only a hormone, but also as a 
neurotransmitter or neuromodulators (98). Generally 
speaking, secretin effects are mediated by activation 
of cAMP synthesis that is decreased during cardiac 
pathologies. For example, reduced responsiveness of 
cardiac secretin-stimulated adenylate cyclase was observed 
in the spontaneous hypertensive rat heart model (99,100). 
Similarly, in the hypertrophic rat heart model there was 
reduced secretin stimulated adenylate cyclase that was likely 
due to a decrease in the number of secretin receptors in 
cardiac myocytes (101). In cats and dogs, secretin has been 
shown to increase cardiac output and heart rate, whereas it 
decreases systemic arteriolar resistance and left ventricular 

end-diastolic pressure, with no significant change in stroke 
volume (102,103). 

Role of secretin in cholangiocytes

Secretin-induced choleresis 

A  n u m b e r  o f  s t u d i e s  h a v e  s h o w n  t h a t  s e c r e t i n 
stimulates the secretion of water and electrolytes in 
cholangiocytes by activating cAMP synthesis that induces 
phosphorylation of PKA, opening of CFTR and activation 
of the apically located Cl-/HCO3

- exchanger AE2 
(3,7,56,57,61,68,70,72,104) (Figure 2). Consistent with 
these data regarding the role of cAMP in the modulation 
of secretin-induced choleresis, a study has shown that 
chronic administration of cAMP agonists (i.e., forskolin) 
enhances secretin-stimulated bile and bile secretion (105). 
Other studies have shown that maintenance of the bile 
acid pool is important for bile secretion, an effect that 
is mediated by the function of the chloride-bicarbonate 
exchange AE2 (106). Further mechanistic studies have also 
shown that secretin-stimulated bile secretion is mediated 
by the microtubule-dependent insertion of aquaporin-1 
water channels (AQP1) into the apical membrane of rodent 
cholangiocytes.

Recent studies have demonstrated that large but not 
small cholangiocytes (lining small and large bile ducts, 
respectively) (3,57,107) are the anatomical sites of secretin-
stimulated water and bicarbonate secretion (3,56,57) 
(Figure 3). In fact, these cells are the only epithelia in the 
liver to express SR, CFTR and Cl-/HCO3

- exchanger AE2 
and to respond to secretin with enhanced cAMP levels, 
Cl- efflux and chloride bicarbonate exchanger (3,56,57). 
Large (but not small) bile ducts have also been shown to 
express SSTR2 receptors and to respond to somatostatin 
with inhibition of cAMP levels, exocytosis and ductal bile 
secretion (56,70).

Small cholangiocytes (which do not express CFTR) 
(3,58) secrete water and electrolytes by activation of 
Ca2+-dependent pathways (Figure 3).  For example, 
adenosine triphosphate release and purinergic (P2) 
receptor-mediated secretion has been demonstrated in 
small mouse cholangiocytes (108). The identification of 
TMEM16A channels and Ca2+-activated Cl- efflux in small 
cholangiocytes in response to extracellular nucleotides 
supports the concept of an alternate, non-cystic fibrosis 
transmembrane conductance regulator, Cl- channel in 
cholangiocytes that may be an important compensatory 

Figure 2 The diagram illustrates that secretin stimulates the 
secretion of bicarbonate ions by cholangiocytes into the duct 
lumen by activating cAMP synthesis that induces phosphorylation 
of PKA, opening of CFTR and activation of the apically located 
Cl-/HCO3

- exchanger AE2.
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secretory mechanism during damage of larger, cAMP-
responsive bile ducts (109). Also, small, mitotically 
dormant cholangiocytes de novo proliferate and secrete (by 
amplification of Ca2+-dependent signaling) and acquire 
markers of large cholangiocytes following damage of these 
cells for example after treatment with CCl4 or GABA (63-65).

Factors that modulate secretin-stimulated ductal bile 
secretion

Several studies have shown that secretin-stimulated 
choleresis is modulated by a number of factors including 
gastrointestinal hormones, peptides and nerve agonists (104).  
For example, somatostatin has been shown to inhibit 
secretin-stimulated ductal bile secretion both in vivo and 
in vitro by selectively interacting with SSTR2 receptors 
by downregulation of cAMP-dependent exocytosis (70). 
While a study has shown that bombesin enhances bile 
flow, stimulated by infusion of acid into the duodenum by 

increasing secretin secretion, somatostatin inhibits bile flow 
produced likely by decreasing the release of secretin from 
the duodenal mucosa (110). We have shown that gastrin 
inhibits secretin-induced ductal secretion by interaction 
with specific receptors (CCK-B) on rat cholangiocytes by 
down-regulation of SR expression and secretin-stimulated 
cAMP levels (72,111); gastrin effects were mediated by 
translocation of Ca2+-dependent PKC isoforms (72,111). 
Similarly, another study has demonstrated that gamma-
interferon decreases collagen content and intrahepatic 
ductal mass in cirrhotic mice, which was associated with 
inhibition of secretin-induced choleresis (112). An inhibitory 
effect on secretin-stimulated choleresis has been demonstrated 
for the vasoactive peptide, endothelin-1 (ET-1), by interaction 
with ETA receptors by downregulation of cAMP levels (71). 
We have demonstrated that insulin receptors are expressed 
by cholangiocytes, and that insulin inhibits secretin-induced 
ductal secretion in BDL rats by activation of PKCα and 
inhibition of secretin-stimulated cAMP levels and PKA 
activity (113). 

With regard to the role of the nervous system in the 
modulation of biliary secretion, we have shown that: (I) D2 
(but not D1 and D3) dopaminergic receptors are expressed 
by cholangiocytes; and (II) the D2 dopaminergic agonist, 
quinelorane, decreases the choleretic effect of secretin on 
bile and bicarbonate secretion, inhibition that was mediated 
by increased expression of the Ca2+-dependent, PKC 
gamma, and decreased PKA activity (114). The role of 
nerve fibers in the modulation of biliary secretion has been 
supported by additional studies as follows. For example, a 
recent study has shown that M3 ACh receptors are present 
in rat cholangiocytes and that acetylcholine potentiated 
secretin-stimulated ductal secretion by activation of the 
Cl-/HCO3

- exchanger AE2 by a Ca2+-dependent, protein 
kinase C-insensitive pathway that potentiates the secretin 
stimulation of adenylyl cyclase (115). Interruption of 
the parasympathetic system (by total vagotomy in BDL 
rats) induces biliary apoptosis and functional damage of 
cholangiocytes with loss of cAMP signaling and secretin-
stimulated choleresis (116), that was prevented by the 
administration of forskolin or feeding bile acids such 
as taurocholic acid (117) and both ursodeoxycholic 
and tauroursodeoxycholic acids (118). Also, adrenergic 
denervation (by the intraportal  administration of 
6-hydroxydopamine) induces the functional damage of bile 
ducts with loss of secretin-stimulated choleresis (119), effects 
that were prevented by the administration of forskolin (an 
adenylyl cyclase activator), β1- and β2-adrenergic receptor 

Large 
Cholangiocytes

Small 
Cholangiocytes

cAMP-dependent 
proliferation
and secretion

Ca2+-dependent 
proliferation
and secretion

Intrahepatic 
progenitor cell
compartment

Extrahepatic
progenitor cell 
compartment

Figure 3 Diagram depicting the functional heterogeneity of 
small and large cholangiocytes, lining small and large bile ducts, 
respectively. Large but not small cholangiocytes are the anatomical 
sites of secretin-stimulated, cAMP-dependent bicarbonate 
secretion. Small cholangiocytes secrete water and electrolytes by 
activation of Ca2+-dependent pathways. The cartoon indicates also 
the possible presence of intra- and extra-hepatic cell compartments 
in the biliary epithelium.
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agonists (clenbuterol or dobutamine, respectively) (119) or 
feeding the bile acid, taurocholic acid (120). A recent study 
by Francis et al. has shown that cholangiocytes express 
α2A-, α2B-, and α2C-adrenergic receptors and that the α2-
adrenergic receptor agonist, UK14, 304, inhibits secretin-
stimulated ductal secretion by downregulation of cAMP 
signaling in cholestatic rats (73). The α-1 adrenergic 
receptor agonist, phenylephrine, increases secretin-
stimulated cAMP levels and ductal secretion of cholestatic 
rats by Ca2+-dependent activation of PKCα and βII (74). 
Thus, coordinated regulation (by stimulatory and inhibitory 
factors) of secretin-stimulated choleresis may be key in 
maintaining the functional homeostasis/integrity of the 
biliary epithelium in pathological conditions associated 
excessive growth or biliary loss.

Bile acids have also been shown to prevent biliary 
damage (e.g., by caffeic acid and CCl4) and loss of secretin-
stimulated ductal secretion (121). For example, feeding the 
bile acid, taurocholic acid, to cholestatic rats prevents caffeic 
acid-induced biliary damage by enhanced cholangiocyte 
vascular endothelial growth factor (VEGF) expression (121). 
Also, taurocholic acid feeding prevents tumor necrosis 
factor-α-induced biliary damage and loss of secretin-
induced bicarbonate-rich choleresis by a PI3K-mediated 
pathway (122).

Regarding the mechanisms of secretin-stimulated 
ductal secretion, a study has shown that the adenylyl 
cyclase isoform, AC8, is mostly expressed by large 
cholangiocytes (123) that are the only cell types expressing 
the secretin receptors and the target of secretin choleresis 
(57,124). Thus, this study suggests that AC8 may be a 
key player in the regulation secretin-induced choleresis 
in large bile ducts (123). In addition, inhibition of the 
biliary expression of arylalkylamine N-acetyltransferase 
(the enzyme key in melatonin synthesis) by administration 
of AANAT Vivo-Morpholinos increase the autocrine 
proliferative responses of cholangiocytes and the expression 
of cAMP/CFTR/Cl-/HCO3

- AE2 signaling and ductal 
secretion (125).

A number of sex hormones have been shown to modulate 
biliary functions. Following castration in cholestatic rats, 
testosterone serum levels decreased (prevented by the 
administration of testosterone), and were associated with 
reduced biliary proliferation and secretin-stimulated cAMP 
levels and bile and bicarbonate secretion (126). Also, follicle-
stimulating hormone increases biliary proliferation and 
secretin-stimulated cAMP-dependent bile secretion (127). 
Some of the factors regulating secretin-stimulated choleresis 

are also summarized in Table 1.

Effect of secretin on biliary hyperplasia

A number of studies have suggested that the functional 
expression of SR may be an index of biliary growth since in 
models with enhanced biliary hyperplasia there is increased 
expression of SR and augmented response to secretin 
(7,8,17,56,62-65,105,127). Conversely, in models of biliary 
damage/apoptosis (e.g., after CCl4 or GABA treatment) we 
have observed a reduction of SR expression and choleretic 
response to secretin (7,8,17,56,62-65,105,127). Recent 
findings have shown that secretin is a trophic factor for 
mouse cholangiocytes and that in vivo and in vitro ablation 
of SR reduces biliary hyperplasia in BDL mice (Figure 4) 
and in cholangiocyte lines (17). The study suggests the 
potential use of secretin as a therapy for ductopenic liver 
diseases (17). Further studies are needed to determine if 
secretin is an autocrine hormone secreted by cholangiocytes.

Role of secretin in human biliary diseases

There is growing information regarding the role of secretin 
and its receptor in the diagnosis and management of biliary 
disorders. For example, Prieto et al. have used positron 
emission tomography in humans for evaluating basal 
and secretin-stimulated biliary bicarbonate secretion as 
index of functionality of the biliary epithelium in normal 
and cholestatic (e.g., PBC) conditions (128). Consistent 
with the importance of secretin in biliary diseases, 
absence of choleretic response to secretin was observed in 
cholestatic and untreated PBC patients (128). Recently, 
secretin-mediated gene delivery has been developed to 
specifically target the intracellular pathways potentially 
important for the treatment of biliary and pancreatic 
disease in cystic fibrosis (9). Secretin stimulated magnetic 
resonance cholangiopancreatography has been used as 
diagnostic tool in diseases of the biliary and pancreatic 
ducts (129). The diagnostic role of secretin-enhanced 
cholangiopancreatography (MRCP) has been suggested 
in patients with unsuccessful endoscopic retrograde 
cholangiopancreatography (ERCP) (130).

Recent studies support the concept that biliary 
bicarbonate may be an important protective mechanism 
in cholangiopathies since a defective HCO3

- umbrella has 
been observed in biliary disorders such as in PBC, and 
primary sclerosing cholangitis (131-134). In support of 
these findings, a recent study has shown that miR-506 
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Table 1 Eulators of secretin-stimulated ductal bile secretion

Regulators
Effect on  

secretin-stimulated bile 
secretion

Signaling pathway References

Somatostatin ↓ Inhibition of cAMP levels and exocytosis by 
interaction with SSTR2

(56,70)

Gastrin ↓ Inhibition of SR expression and cAMP levels by 
interaction with CCK-B receptors by activation of PKCα 

(72,111)

Endothelin-1 ↓ Inhibition of cAMP levels by interaction with ETA receptors (71)

Insulin ↓ Inhibition of cAMP levels by activation of PKCα 
and inhibition of PKA

(113)

D2 dopamine agonists ↓ Inhibition of cAMP levels by interaction with D2 
receptors by activation of PKCγ and inhibition of PKA 

(114)

Acetylcholine ↑ Activation of the Cl-/HCO3
- exchanger AE2 (115)

Interruption of the 
parasympathetic system 
by vagotomy

↓ Downregulation of cAMP signaling that was 
prevented by taurocholic acid, ursodeoxycholic 
and tauroursodeoxycholic acids

(116-118)

Interruption of the sympathetic 
system by the intraportal 
administration 
of 6-hydroxydopamine

↓ Downregulation of cAMP signaling that was 
prevented by β1- and β2-adrenergic receptor 
agonists and taurocholic acid

(119,120)

α2-adrenergic receptor 
agonist, UK14, 304

↓ Downregulation of cAMP signaling by interaction 
with α2A-, α2B-, and α2C-adrenergic receptors

(73)

α-1 adrenergic receptor 
agonists

↑ Stimulation of cAMP levels by activation of PKCα and βII (74)

BDL WT BDL SR KO

SR KO

Figure 4 Ablation of the SR gene (expressed only in cholangiocytes) in 2-wk BDL mice reduces large biliary hyperplasia typical of 
cholestatic animals. Orig. magn., ×40.
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is up-regulated in cholangiocytes from PBC, binds the 
3'UTR region of AE2 mRNA, prevents protein translation 
thus causing diminished AE2 activity and impaired ductal 
secretion (135). The study suggests that miR-506 may 
constitute a potential therapeutic target for the management 
of PBC (135).

Conclusions/future perspectives

We have discussed that secretin and its receptors regulate 
the secretory activity of a number of organ tissues including 
the stomach, intestine, pancreas, heart and the biliary 
epithelium in the liver. Regarding the biliary epithelium, we 
have shown that secretin and its receptor (only expressed 
by cholangiocytes in the liver) play key role in the secretory 
and proliferative activity of large cholangiocytes, the only 
cell types that express SR and respond to secretin. Small 
cholangiocytes (which constitutively do not express SR) 
acquire large cholangiocyte phenotypes in pathological 
conditions associated with damage of large cholangiocytes 
and amplify their Ca2+-dependent signaling to compensate 
for loss of large biliary functions and to maintain the 
homeostasis of the liver. We have also shown that secretin 
may be an important trophic autocrine factor that may 
sustain biliary proliferation during ductopenic states. It 
has also suggested the diagnostic role of secretin in biliary 
diseases such as PBC and biliary atresia. Further studies are 
necessary to determine the prognostic role of secretin in the 
diagnosis of ductopenic biliary diseases. 
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